Complementation of sporulation and motility defects in a prokaryote by a eukaryotic GTPase.
نویسنده
چکیده
The complex prokaryote, Myxococcus xanthus, undergoes a program of multicellular development when starved for nutrients, culminating in sporulation. M. xanthus makes MglA, a 22-kDa, soluble protein that is required for both multicellular development and gliding motility. MglA is similar in sequence to the Saccharomyces cerevisiae SAR1 protein, a member of the Ras/Rab/Rho superfamily of small eukaryotic GTPases. The SAR1 gene, when integrated into the M. xanthus genome, complements the sporulation defect of a DeltamglA strain. A forward, second-site mutation on the M. xanthus chromosome, rpm, in combination with SAR1, restores fruiting body morphogenesis and gliding motility to a DeltamglA strain. The result that the rpm mutation suppresses the substitution of SAR1 for mglA suggests that Sar1p interacts with other M. xanthus proteins to control the motility-dependent aggregation of cells during development.
منابع مشابه
Eukaryote-like Ser/Thr protein kinase PrkA modulates sporulation via regulating the transcriptional factor σK in Bacillus subtilis
Protein kinase A (PrkA), also known as AMP-activated protein kinase, functions as a serine/threonine protein kinase (STPK), has been shown to be involved in a variety of important biologic processes, including pathogenesis of many important diseases in mammals. However, the biological functions of PrkA are less known in prokaryote cells. Here, we explored the function of PrkA as well as its und...
متن کاملCell polarity/motility in bacteria: closer to eukaryotes than expected?
The Gram-negative bacterium Myxococcus xanthus glides on solid surfaces and periodically reverses the direction of movement. Work published in this issue of The EMBO Journal (Leonardy et al, 2010) reports on the small GTPase MglA that ensures the correct polarity of the motility engines through its GTP/GDP cycle in conjunction with its cognate GAP, MglB. MglA has also been shown to interact wit...
متن کاملA Versatile Class of Cell Surface Directional Motors Gives Rise to Gliding Motility and Sporulation in Myxococcus xanthus
Eukaryotic cells utilize an arsenal of processive transport systems to deliver macromolecules to specific subcellular sites. In prokaryotes, such transport mechanisms have only been shown to mediate gliding motility, a form of microbial surface translocation. Here, we show that the motility function of the Myxococcus xanthus Agl-Glt machinery results from the recent specialization of a versatil...
متن کاملStructural/functional homology between the bacterial and eukaryotic cytoskeletons.
Structural proteins are now known to be as necessary for controlling cell division and cell shape in prokaryotes as they are in eukaryotes. Bacterial ParM and MreB not only have atomic structures that resemble eukaryotic actin and form similar filaments, but they are also equivalent in function: the assembly of ParM drives intracellular motility and MreB maintains the shape of the cell. FtsZ re...
متن کاملDisA, a Busy Bee That Monitors Chromosome Integrity
When nutrients are limited many prokaryotic and some eukaryotic cells tuck their chromosomes safely away in resistant spores. However, before starting the sporulation process, the prokaryote Bacillus subtilis wisely ensures that its chromosome is intact. In this issue of Cell, Bejerano-Sagie et al. (2006) describe a protein, DisA, that is responsible for the surveillance of chromosome integrity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 94 18 شماره
صفحات -
تاریخ انتشار 1997